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SUMMARY
Inherited heterozygous BRCA2 mutations predispose carriers to tissue-specific cancers, but somatic dele-
tion of the wild-type allele is considered essential for carcinogenesis. We find in a murine model of familial
pancreatic cancer that germline heterozygosity for a pathogenic Brca2 truncation suffices to promote
pancreatic ductal adenocarcinomas (PDACs) driven byKrasG12D, irrespective of Trp53 status. Unexpectedly,
tumor cells retain a functional Brca2 allele. Correspondingly, three out of four PDACs from patients inheriting
BRCA2999del5 did not exhibit loss-of-heterozygosity (LOH). Three tumors from these patients displaying LOH
were acinar carcinomas, which also developed only in mice with biallelic Brca2 inactivation. We suggest
a revised model for tumor suppression by BRCA2 with implications for the therapeutic strategy targeting
BRCA2 mutant cancer cells.
INTRODUCTION

The BRCA2 tumor suppressor gene encodes a nuclear protein

of 3418 residues (3328 in the mouse) with a pivotal role in the

maintenance of chromosome stability via homology-directed

DNA repair (reviewed in Venkitaraman, 2009). Concordant with

the ‘‘two-hit’’ paradigm for tumor suppression (Knudson,

1971), somatic deletion of the wild-type BRCA2 allele has been

reported to occur consistently in breast or ovarian cancer cells

from mutation carriers (Collins et al., 1995; Gudmundsson

et al., 1995) and is therefore regarded as an essential event in

carcinogenesis. This principle underlies the clinical use of
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2003). Some apparently sporadic pancreatic cancers are also

found to harbor germline BRCA2 mutations, because a positive

family history is frequently lacking (Goggins et al., 1996). More

recently, PALB2, which encodes a BRCA2-interacting protein

also essential for homology-directed DNA repair, has emerged

as a pancreatic cancer-susceptibility allele (Jones et al., 2009).

Although these findings collectively highlight its potential impor-

tance, the role played by BRCA2 inactivation in pancreatic carci-

nogenesis remains unclear.

Several of the most frequent genetic events underlying the

initiation and progression of human pancreatic cancer have

been identified (Hezel et al., 2006; Maitra and Hruban, 2008).

Notably, activating mutations in the KRAS proto-oncogene

occur in > 90%of PDAC (Caldas and Kern, 1995) and are consid-

ered as a key driver for pancreatic carcinogenesis, whereas

mutations inactivating the TP53 gene occur in 50%–75% of

patients (Redston et al., 1994). A cooperative effect between

Kras activation and Trp53 inactivation in promoting pancreatic

carcinogenesis has been demonstrated in murine models

(Hingorani et al., 2005). Here, we have exploited these findings

to develop a mouse model for familial pancreatic cancer associ-

ated with BRCA2 inactivation.

RESULTS

We utilized the well-validated KPC murine model of PDAC

(Hingorani et al., 2003, 2005; Olive et al., 2004, 2009), in which

Cre-loxP recombination in Pdx1-CRE (C) expressing pancreatic

progenitors directs the tissue-specific activation of endogenous

oncogenic KrasG12D (K), with or without concurrent expression of

the Trp53R270H (P) dominant-negative contact mutant. We intro-

duced into this setting two distinct mutant alleles of Brca2 (B).

The first encodes the germline-truncating alleleBrca2Tr (abbrevi-

ated Tr), which terminates the encoded protein at amino acid (aa)

1492, and mimics known pathogenic mutations in human

BRCA2 associated with pancreatic cancer (Friedman et al.,

1998; Hahn et al., 2003). This allele emulates BRCA2 heterozy-

gosity in all somatic tissues, characteristic of human mutation

carriers. The second allele is a conditional Brca2 deletion (abbre-

viated F11), in which loxP sites flank the evolutionarily conserved

Brca2 exon 11 that encodes binding sites for the Rad51 recom-

binase (Wong et al., 1997) and is critical for Brca2’s function in

DNA repair (Chen et al., 1998). This enables Cre-mediated

exon 11 deletion (abbreviated D11) in specific tissues, emulating

the loss-of-heterozygosity (LOH) observed in human cancers by

gross genomic rearrangements in BRCA2 (Jonkers et al., 2001).

Experimental mice were maintained on a mixed C57BL/6; 129;

FVB/N genetic background, and all experiments were performed

using littermate controls in order to ensure that comparisons

were between mice on the same genetic background. Figure 1A

schematically represents the alleles used to engineer KPCB

and KCB strains (i.e., with or without Trp53R270H), harboring

the different Brca2 genotypes.

Cre expression in the Pdx1-defined pancreatic anlagen led to

efficient recombination of all conditional alleles. This was verified

by allele-specific polymerase chain reactions (PCRs) for the

Kras1-loxP, Trp531-loxP, Brca2F11 and Brca2D11 alleles in DNA

extracted from microdissected cancerous ducts and early

passage PDAC cell lines from KPCBTr/D11 mice (Figure 1B).
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Consistent with previous observations, loss of the wild-type

Trp53 allele was a universal event in tumors expressing mutant

Trp53R270H.

As expected, neither heterozygous nor homozygous Brca2

inactivation in the murine pancreas was sufficient for pancreatic

carcinogenesis without the concurrent expression of KrasG12D.

This is evident irrespective of Trp53 status, even after prolonged

follow up (see Figure S1 available online), suggesting that Kras

activation is necessary to initiate pancreatic carcinogenesis in

this model.

Homozygous Brca2 inactivation in the KPCBTr/D11 strain

caused PDAC at a high penetrance, with a rapid and predictable

clinical decline (median PDAC-free survival 84 days, range

48–110 days) compared with the KPCB cohort carrying wild-

type Brca2 (median PDAC-free survival 168 days, range

60–254 days) (Figure 1C). Remarkably, however, germline

heterozygosity for the truncating allele Brca2Tr in the KPCBTr/WT

strain also curtailed PDAC-free survival compared with KPCB

animals who had wild-type Brca2 (median PDAC-free survival

143 days, range 91-191 days; p = 0.0013, log-rank test) (Fig-

ure 1C). Germline heterozygosity for Brca2Tr was sufficient to

promote carcinogenesis, even in KCBTr/WT mice with wild-type

Trp53 and mutant KrasG12D, a background in which frank

pancreatic cancer is reported to develop less readily (Hingorani

et al., 2003). Thus, there is a statistically significant reduction in

the PDAC-free survival of KCBTr/WT mice in comparison with

KCB controls with wild-type Brca2 (p = 0.0149, log rank test)

(Figure 1D). A similar cancer-promoting effect for germline

Brca2 heterozygosity has not hitherto been reported in any

constitutive or conditional murine model of Brca2 deficiency.

Interestingly, in KCBTr/D11 mice with wild-type Trp53, Pdx1-

Cre mediated loss of the second Brca2 allele in the pancreas

frequently caused pancreatic insufficiency, necessitating the

sacrifice of 25% of the animals in this cohort (8/32) at a median

age of 63.5 days (range 51–121). We observed a spectrum of

histological anomalies, from isolated paucity of the islets of

Langerhans to complete fibro-inflammatory or cystic degenera-

tion of both the endocrine and exocrine pancreas (Figure 2A).

This suggests that many Brca2-deficient cells expressing

KrasG12D in these compartments cannot survive when Trp53-

dependent cell cycle checkpoints responsive to DNA breakage

are intact, in agreement with prior observations in other experi-

mental systems (Ludwig et al., 1997). Consistent with this infer-

ence, pancreata from 6 day old KCBTr/D11 neonatal mice exhibit

both a marked increase in the abundance of apoptotic cells as

well as in staining for the phosphorylated form of the variant

histone H2AX, a marker for double-strand DNA breaks, when

compared with KCBWT/WT, KCBTr/WT, CBWT/WT, or CBTr/WT litter-

mate controls (Figure S2). Interestingly, animals in this cohort

that did not succumb to pancreatic insufficiency later developed

PDAC with a moderate latency and incomplete penetrance,

but nevertheless exhibited significantly shortened PDAC-free

survival compared with KCB controls with wild-type Brca2

(p = 0.0114, log rank test) (Figure 1D).

Pancreatic tumors originating in the setting of Brca2 heterozy-

gosity (with or without mutant Trp53) displayed histological

features remarkably similar to human pancreatic cancers. Most

had a morphology closely resembling human PDAC, with abun-

dant desmoplastic stroma surrounding the cancerous glands
.
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Figure 1. Brca2Mutations Promote Pancreatic Carcinogenesis Driven byOncogenicKras G12Dwith orwithout ConcurrentMutantTrp53R270H

Expression

(A) Schematic representation of the targeted alleles before and after Cre-mediated recombination. The Brca2Tr allele (bottom) is expressed in all somatic tissues.

(B) Recombination of the conditional alleles in cell lines andmicrodissected cancerous ducts fromKPCBTr/D11mice revealed by semiquantitative PCR. Tail DNA is

used as a control. PCR primer pairs are indicated by red arrows in (A); their sequences are in Supplemental Experimental Procedures.

(C and D) Kaplan-Meier estimates of PDAC-free survival in aging KPCB (C) and KCB (D) cohorts. The Brca2 genotype is indicated. The log rank test was used for

all the indicated statistical comparisons. The only pair-wise comparison that is not statistically significant is marked p = 0.6821.See also Figure S1.
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(Figures 2B and 2C). These tumors evolved along the pancreatic

intraepithelial neoplasia (PanIN) cascade (Figures 3A–3F), well

characterized in human pancreatic cancers (Hruban et al.,

2001), and exhibited characteristic patterns of invasive growth

and metastatic behavior (Figures 3G–3L). Less common histo-

logical variants of human pancreatic cancer, predominantly

undifferentiated carcinoma with sarcomatoid and anaplastic

features, were also represented (Figures 2D and 2E). Prominent

intra-tumoral heterogeneity was frequently present, with distinct

histological appearances often evident in adjacent regions of the
Can
same tumor. Interestingly, the KPCBTr/D11 cohort, which carries

biallelic Brca2 mutations, uniquely developed an acinar-cell

carcinoma component in �18% of assessable cases (5/28),

not observed in the other cohorts with Brca2 heterozygosity

(Figures 2F–2H). Furthermore, one tumor within this cohort

(1/28) displayed a small component with prominent immunohis-

tochemical positivity for chromogranin A, characteristic of

endocrine neoplasms (Figure 3J; data not shown). Collectively,

our observations suggest that Brca2 inactivation promotes

the evolution of oncogenic Kras-driven pancreatic malignancies
cer Cell 18, 499–509, November 16, 2010 ª2010 Elsevier Inc. 501



* *

*

*
A B C

F

****

*

*

D

E G H

Figure 2. Representative Histological Appearances of Pancreatic Malignancies in KPCB and KCB Mice

(A) Intense fibro-inflammatory obliteration of the normal acinar structure with ductal cystic dilatation, replacing the pancreatic parenchyma in a 62 day old

KCBTr/D11 mouse with clinical signs of pancreatic insufficiency.

(B) Classical ‘‘haphazard’’ growth pattern of a well-differentiated PDAC in a 4 month old KPCBTr/WT mouse. Abundant desmoplastic stroma surrounds the

cancerous ducts (*).

(C) High-magnification image of a moderately differentiated adenocarcinoma. The irregular glandular structures, composed of moderately pleomorphic cells

(yellow arrowhead), are surrounded by desmoplastic stroma (*).

(D) A sarcomatoid tumor from the KPCBTr/D11 strain, with mildly pleomorphic spindle cells arranged in intervening fascicles.

(E) Anaplastic pancreatic cancer. Note the completely bizarre nuclei and the characteristic noncohesive growth pattern of malignant cells in this histological

subtype (yellow arrow).

(F) Ductal-type adenocarcinoma (white asterisk) coexists with an acinar-cell carcinoma (*) within the same imaging field in a 3.5 month old KPCBTr/D11 mouse.

(G) Higher-power view of acinar-cell carcinoma from a second KPCBTr/D11 mouse showing malignant cells with granular eosinophilic apical cytoplasm (and

frequently a single prominent nucleolus); several minute lumina, resembling normal acini (yellow arrow), are evident and intervening stroma is scarce.

(H) Foci of intracytoplasmic granular positivity with dPAS staining (arrowhead) within an acinar-cell carcinoma from a different KPCBTr/D11 mouse. Scale

bar = 50 mm. See also Figure S2.
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in mice that are strikingly similar to their human counterparts,

providing a valuable resource for future studies. Table 1 summa-

rizes the features and histological characteristics of PDAC

arising in the different cohorts.

To validate our conclusion that Brca2 heterozygosity suffices

to promote carcinogenesis driven by oncogenic Kras in the

pancreas, we gathered multiple independent lines of evidence

to confirm that the remaining wild-type Brca2 allele had been

retained in tumors from KPCBTr/WT and KCBTr/WT animals.

mRNA prepared from early passage cell lines derived from

a panel of KPCBTr/WT tumors was analyzed by quantitative

reverse-transcription (RT)-PCR using a primer pair that amplifies

a segment in the 30 region of the Brca2 mRNA (expected to be

absent in transcripts from the Brca2Tr allele). The analysis

showed that wild-type Brca2 mRNA was expressed in these

tumors at approximately half the levels observed in a control

KPCB cell line carrying wild-type Brca2, consistent with tran-

scription from a retained wild-type Brca2 locus in the heterozy-

gous tumors (Figure 4A). Western blotting for murine Brca2

protein using an N-terminal antibody confirmed expression of

full-length Brca2 protein in heterozygous tumors (Figure 4B).

Southern blots of genomic DNA extracted from snap-frozen

whole pancreatic tumors arising in strains heterozygous for

Brca2 further demonstrated that thewild-type allele was retained

in vivo (Figure 4C; Figure S3A), arguing against the possibility
502 Cancer Cell 18, 499–509, November 16, 2010 ª2010 Elsevier Inc
that tumors with Brca2 deletion were present but failed to grow

out in ex vivo cultures. Finally, two distinct assays confirmed

that the retained Brca2 allele could express a functional Brca2

protein. Accumulation of the RAD51 enzyme in nuclear foci

induced by DNA damage requires functional BRCA2 (Yuan

et al., 1999). Indeed, tumor-derived cell lines from KPCBTr/WT

mice heterozygous for Brca2 robustly induce Rad51 nuclear

foci when exposed to mitomycin C (MMC), a genotoxin known

to engage Brca2-dependent DNA repair. In contrast, baseline

and MMC-induced nuclear Rad51 foci were suppressed in

tumor-derived cell lines from KPCBTr/D11 mice lacking both

Brca2 alleles (Figures 4D and 4E). Similarly, KPCBTr/WT tumor

cell lines with a retained Brca2 allele were more resistant to

MMC and the poly-ADP-ribose polymerase (PARP1) inhibitor

Olaparib than similar cell lines from KPCBTr/D11 mice lacking

both Brca2 alleles (Figures 4F and 4G; Figures S3B–S3D), in

agreement with previous reports (Farmer et al., 2005; van der

Heijden et al., 2005). Collectively, our findings offer strong

evidence that PDACs arising in strains heterozygous for Brca2

mutations retain a functional second allele.

It is noteworthy that 24 of the 26 PDAC tumors arising in the

KPCBTr/WT animals included in our survival analysis demon-

strated retention of the wild-type allele. DNA from one tumor

was unavailable, whereas another tumor exhibited apparent

LOH (Figure S3A). Their exclusion did not alter our statistical
.
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Figure 3. Murine Tumors Faithfully Recapitulate the

Histological Progression and Metastatic Propensities

of Human PDAC

(A) PanIN-1A in a 4 month old KCBWT/WT mouse.

(B) PanIN-2 (arrow) surrounded by PanIN-1A (yellow arrow-

head) and PanIN-1B (yellow cross) in a 8.75 month old

KCBTr/WT mouse.

(C) PanIN-3 (yellow arrow) in a 6.25 month old KPCBTr/WT

mouse.

(D–F) Positive immunostaining for Cytokeratin-19 confirms the

ductal phenotype of PanIN lesions that also stain positive with

the Alcian blue (E) and dPAS (F) histochemical stains due to

their high mucin content.

(G) Prominent duodenal invasion in a moderately-differenti-

ated KPCBTr/WT tumor (*).

(H) Involvement of a peripancreatic lymph node by a moder-

ately/poorly differentiated pancreatic adenocarcinoma (yellow

arrow).

(I and J) Liver metastases (*) from a poorly differentiated PDAC

(I) and predominantly endocrine (J) neoplasm. Note the blood

vessel in close anatomical proximity to the tubular metastasis

(arrow).

(K and L) (K) Parenchymal lung metastasis (*) and (L) pleural

metastasis (arrow). Scale bar = 50 mm.
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conclusions from the survival analysis, ruling out the possibility

that loss of the wild-type Brca2 allele in a very small fraction of

KPCBTr/WT tumors might account for the observed differences.

A founder mutation in human BRCA2 (999del5) has an allele

frequency of �0.6% in the general population of Iceland, but

accounts for about 40% of familial breast and ovarian cancer

cases in this population (Thorlacius et al., 1996, 1997).

BRCA2999 del5 encodes an unstable protein that is undetectable

in cells heterozygous for the allele (Mikaelsdottir et al., 2004).
Table 1. Clinical Features and Histological Characteristics of Pancreatic Tumors

Genotype n PDAC

PDAC-free survival Histology

Median Range Tubular

KPCBWT/WT 30 24 168 60–254 92 (92)

KPCBTr/WT 30 26 143 91–191 96 (100)

KPCBTr/D11 30 29 84 48–110 82 (100)

KCBWT/WT 40 6 N/A N/A 83 (100)

KCBTr/WT 40 12 N/A N/A 100 (100)

KCBTr/D11 32 6 N/A N/A 83 (100)

In assessing the contributions of different histological appearances, the reported numbers

the particular histology predominates (occupies more than 50% of the total tumor area), wh

tumors with any component of the indicated histology present. Percentage calculations are

within each cohort.

Cancer Cell 18, 4
We traced seven known cases of pancreatic

cancer (Table 2) arising in carriers of the 999del5

allele through the Icelandic Cancer Registry.

Four of these tumors represent typical PDACs

(Figures 5A–5D) whereas the remaining three

were characterized as acinar cell carcinomas

based on their morphology, immunohistochemical

positivity for chymotrypsin and trypsin, and their

lack of expression of ductal or endocrine markers

(Figures 5E–5H; data not shown). DNA samples
extracted from microdissected cancerous ducts were analyzed

for allelic ratios of the wild-type and mutant BRCA2 alleles

using allele-specific PCR, which strongly correlates with

changes in copy number over the entire BRCA2 locus by array

CGH (Figure S4). Remarkably, three out of the four tumor

samples with typical ductal histology (75%) did not exhibit

LOH at the mutation site. On the contrary, all three acinar carci-

nomas demonstrated LOH for BRCA2999 del5 (Figure 5I and

Table 2; Figure S4).
Arising in Different Mouse Cohorts

Sarcomatoid Anaplastic Acinar

8 (21) 0 (4) 0 (0)

4 (15) 0 (4) 0 (0)

18 (54) 0 (7) 0 (18)

17 (50) 0 (0) 0 (0)

0 (17) 0 (0) 0 (0)

17 (33) 0 (17) 0 (0)

refer to the percentage of tumors within each cohort where

ereas numbers in parentheses represent the percentage of

based on the numbers of histologically assessable tumors

99–509, November 16, 2010 ª2010 Elsevier Inc. 503
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Figure 4. Retention of a Functional Brca2 Allele in PDAC Cell Lines and Tumors from Brca2 Heterozygote Mice

(A) Quantitative RT-PCRwas performed onmRNA fromKPCBPDAC lines of the specified genotypes, using primers recognizing the 30 end ofmurineBrca2 (Brca2

22 Forward, Brca2 24 Reverse). ‘‘Tr/LOH’’ refers to a KCBTr/D11 PDAC line used as control (which has lost Brca2 genomic sequences 50 to the loxP site within

intron 10). The graph shows Ct values normalized to the Ct values of Gapdh as a percent change compared with a PDAC line homozygous for wild-type

Brca2. Error bars represent standard deviation (SD) from the mean of triplicate reactions.

(B) Western blot of murine Brca2 protein using an antibody against the N-terminal region in whole cell lysates from KPCBTr/WT and KCBTr/WT lines. b-actin serves

as a loading control.

(C) Southern blot of EcoRI-digested tumor DNA using a 30 probe, external to the IRES-bGeo-pA cassette. Densitometry was used to quantify the ratio of the inten-

sity of the lower (3.1kb) band, representing the wild-type allele to that of the upper (3.9kb) band corresponding to mutant Brca2.

(D) Representative confocal images (x400) of Rad51 nuclear foci induced in KPCB lines by exposure to 100 ng/ml MMC for 24 hr. Scale bar = 50mm.

(E) A graph quantifying the experiments depicted in (D) using the Cellomics HCS Arrayscan VTI (ThermoFisher) shows the average number of nuclear Rad51 foci

per cell (n R 800 cells in each sample). DAPI-stained nuclei are shown in blue, whereas Rad51 foci are represented in white. Error bars represent the standard

error of the mean (SEM) from 20 imaging fields per sample.

(F and G) Viability curves of representative KPCB lines following exposure for 72 hr either to Mitomycin C (F) or the PARP1 inhibitor, Olaparib (G).Error bars repre-

sent SD from the mean value from quintuplicate wells. Median IC50 values for MMC and Olaparib differed significantly across the three groups (KPCB carrying

wild-typeBrca2, KPCBTr/WT, and KPCBTr/D11) (p = 0.0090 and p = 0.0092, respectively; Kruskal-Wallis test). Dunn’s post-test was used for individual comparisons

between the three groups (n = 5 for each group). Asterisks denote statistical significance at p < 0.05. See also Figure S3.
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Table 2. Clinical Features andBRCA2999del5 LOHAnalysis in Seven Pancreatic Cancer Cases fromConfirmedCarriers of this Icelandic

Founder Mutation

Sample

identifier Sex

Age at

diagnosis

LOH at

BRCA2999 del5 Histology Other pathologies

s1 M 70 Y Acinar-cell carcinoma (head) N/A

s7 F 59 Y Acinar-cell carcinoma (head) Lobular breast cancer (58)

s5 M 43 N Adenocarcinoma (moderately differentiated) N/A

s9 F 50 N Adenocarcinoma (moderately differentiated) Ductal breast cancer;

myxopapillary ependymoma (48)

s10 F 78 Y Adenocarcinoma (moderately differentiated) N/A

s3 M 71 Y Acinar-cell carcinoma N/A

s8 M 67 N Adenocarcinoma NOS (tail) N/A

The number in brackets in the last column refers to age in years at diagnosis.

Cancer Cell
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DISCUSSION

We suggest, on the basis of our findings, a revised model for

carcinogenesis associated with BRCA2 deficiency in the

pancreas (Figure 6), which incorporates several interesting
A B

E F

s10 s5
LOH No LOH

LOH LOH
s1 s3

I

Figure 5. BRCA2 Alleles in Pancreatic Cancers from Carriers of the 99

(A–H) Histology of pancreatic neoplasms in confirmed carriers of the pathogenic

(I) Allele-specific quantification of wild-type and mutant BRCA2 alleles in seven h

BRCA2 alleles, wild-type (gray) and mutated (white), is displayed for individual tu

based on concordance with copy number changes measured by array CGH. Se

Can
features. We find that germline heterozygosity for Brca2

mutations suffices to promote the development of KrasG12D-

driven pancreatic ductal adenocarcinomas, typically represent-

ing >90% of human pancreatic tumors, irrespective of the

functional status of Trp53. Unexpectedly, these tumors retain
C

G

D

H

s8 s9
No LOH No LOH

LOH LOH
s7 s7

9del5 Mutation

BRCA2999del5 mutation.

uman pancreatic tumor samples using quantitative RT-PCR. The proportion of

mors. The threshold line for determining loss of the wild-type allele (%30%) is

e also Figure S4.
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Figure 6. A Revised Model for Tumor Suppression by BRCA2

Our work models germline inheritance of the Brca2Tr allele in all somatic

tissues (first hit, top), and KrasG12D activation in the pancreas (second hit),

combined either with early LOH of the second Brca2 allele (third hit, left-

hand side) or with its retention (heterozygote effect, right-hand side). The effect

of Trp53 status is also indicated. Late loss of the second Brca2 allele occurs in

some tumors, even if it is not essential for carcinogenesis and may further fuel

tumor progression. Early loss of the second allele on the other hand, if toler-

ated, may divert tumor evolution down a distinct trajectory, toward acinar-

cell carcinomas.
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a functional Brca2 allele. Consistent with these results, we also

demonstrate that three out of four human ductal pancreatic

cancers arising in carriers of the BRCA2999del5 mutation do not

exhibit LOH at the mutation site. Together, these findings offer

strong evidence that somatic deletion of the second BRCA2

allele is not always necessary for carcinogenesis, revising

current conceptual understanding of the tumor suppressive

role of BRCA2. Interestingly and in support of our model, hetero-

geneous loss of the second allele was recently reported in twelve

cases of human BRCA2-linked breast cancer (King et al., 2007),

lending further weight to our suggestion. It will therefore be

important to reassess the widely held view (Gudmundsson

et al., 1995; Osorio et al., 2002) that the second BRCA2 allele

is consistently lost in human breast, ovarian, pancreatic, or other

tumors arising in mutation carriers. However, we emphasize that

our model does not preclude loss of the wild-type BRCA2 allele

in some of these cancers, but instead posits that this event may

be less frequent than previously supposed because it is not

essential for carcinogenesis. We cannot unequivocally exclude

in the available human samples that the second BRCA2 allele

has been silenced or affected by deleterious intragenic muta-
506 Cancer Cell 18, 499–509, November 16, 2010 ª2010 Elsevier Inc
tions, possibilities that require further investigation using larger

sample groups.

Interestingly, three pancreatic tumors from BRCA2999del5

mutation carriers that showed evidence of LOH at the mutation

site were classified as acinar-cell carcinomas. This histological

type normally constitutes only 1%–2% of all pancreatic

neoplasms (Hruban et al., 2007), making it unlikely that this clus-

tering has occurred by chance. Also, an acinar-carcinoma

component was exclusively observed in the KPCBTr/D11 mouse

cohort with enforced, early, biallelic Brca2 inactivation, a pheno-

type not encountered in any of the 30 KPCBTr/WT or KPCBWT/WT

mice. Thus, our findings raise the possibility that LOH in Brca2,

when it occurs early and is tolerated, can divert pancreatic carci-

nogenesis down a distinct evolutionary pathway.

Our results indicate that the activation of oncogenes like Kras

may unmask the cancer-promoting effect of Brca2 heterozy-

gosity, which has not been previously observed in murine

models in which Brca2 alone is conditionally or constitutively in-

activated (Evers and Jonkers, 2006). Whether this phenotype

reflects a unique cooperative effect between oncogenic

KrasG12D and mono-allelic Brca2 mutations or a more broadly

applicable principle for the effect of Brca2 dosage on oncogene

activation is at present unknown.

Significantly, our work suggests that the integrity of Trp53

shapes the cellular outcome of the second Brca2 allele loss

during carcinogenesis; thus, Brca2 LOH in cells with intact

Trp53 may favor cell death rather than outgrowth (Jonkers

et al., 2001; Ludwig et al., 1997). In the setting of inactive

Trp53, on the other hand, biallelic Brca2 inactivation leads to

rapid tumor progression, as evidenced by the dramatically cur-

tailed PDAC-free survival of KPCBTr/D11 mice, suggesting that

the loss of the second Brca2 allele is tolerated and fuels tumor

progression under these conditions. Indeed, our data raise the

possibility that in the fraction of pancreatic tumors where

the second allele is lost, this event may have occurred late in

the tumorigenic process, subsequent to the inactivation of

TP53 (and/or other checkpoint genes, whose loss is similarly

permissive). Support for this possibility comes from studies on

samples from three human pancreatic ductal adenocarcinomas,

in whichBRCA2 LOH appeared to be a late event (Goggins et al.,

2000).Moreover, selection against completeBRCA2 inactivation

may persist even in established tumors as suggested by the

failure to disrupt both alleles using gene targeting in a pancreatic

cancer cell line (Gallmeier et al., 2007).

Taken together, our findings, and the revised model for tumor

suppression by BRCA2 that they suggest, have several implica-

tions for cancer therapy. The clinical use of drugs such as PARP1

(insert 1 as before) inhibitors that selectively kill cancer cells

homozygous but not heterozygous for BRCA2mutations (Bryant

et al., 2005; Farmer et al., 2005) is based on the premise that the

wild-type BRCA2 allele is consistently deleted in tumor cells.

Consequently, patient selection for these therapies currently

relies on the documentation of BRCA2 mutation carrier status

using normal tissues (usually, peripheral blood mononuclear

cells). However, our data raise the possibility that a proportion

of PDACs arising in mutation carriers will retain a functional

BRCA2 allele, and may exhibit resistance to targeted therapies

like PARP1 inhibitors. We therefore suggest that these agents

should preferably be used after LOH is confirmed in tumor
.
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samples. In the specific setting of pancreatic acinar-cell carci-

nomas arising inBRCA2mutation carriers, however, our findings

suggest that biallelic BRCA2 inactivation may be more frequent.

Targeted therapies could therefore be of particular value for this

histological type, a suggestion that warrants further examination.

Thus, our work using a murine model that faithfully recapitulates

tissue-specific familial carcinogenesis in BRCA2 mutation

carriers revises current concepts for disease pathogenesis and

helps to inform the design of clinical trials using targeted agents.

EXPERIMENTAL PROCEDURES

Animal Strains, Husbandry, and Maintenance

LSL-KrasG12D/+;LSL-Trp53R270H/+; Brca2F11/WT animals were generated by

crossing the previously described LSL-KrasG12D/+;LSL-Trp53R270H/+ (Olive

et al., 2009) and Brca2F11/WT (Jonkers et al., 2001) strains, the latter back-

crossed six times to the FVB/N background. Pdx1-Cre; Brca2Tr/WT double-

transgenic mice were generated by crossing the previously described

Pdx1-Cre transgenic (Hingorani et al., 2005; Olive et al., 2009) and Brca2Tr/WT

(Friedman et al., 1998) strains (the latter also backcrossed six times to the

FVB/N background). These strains were interbred to generate the experi-

mental animals used in the study. Thus, all experiments were performed using

littermate mice from a mixed but uniform C57BL/6;129;FVB/N genetic back-

ground. Mice were maintained in a specific pathogen-free environment under

a 12 hr light/dark cycle. The animals were euthanized using a Schedule 1

method when they met predetermined severity endpoint criteria. All experi-

mentswere performed in accordancewith national and institutional guidelines,

and the study was approved by the ethical review committee of the University

of Cambridge.

Generation of PDAC Cell Lines

Pancreatic cancer cell lines from explanted murine tumors were established

using previously published methods (Schreiber et al., 2004; Olive et al.,

2009). All experiments reported in this study were conducted in early passage

cell lines (%P10) grown in complete medium (DMEM+10%FBS+1%Penicillin/

Streptomycin).

Statistical Analyses

All statistical analyses were performed using GraphPad Prism version 5.01

for Windows (GraphPad Software, San Diego, CA). Kaplan-Meier estimates

of pancreatic cancer-free survival were compared using the log-rank test.

A Bonferroni-corrected p value % 0.0167 was considered statistically signifi-

cant, in order to account for the three possible individual comparisons

between strains. Deaths due to causes other than pancreatic cancer were

treated as censored observations. The IC50 values for MMC and Olaparib

were grouped according to the Brca2 status of the corresponding PDAC cell

lines and compared using the Kruskal-Wallis test. Pair-wise comparisons

between individual genotypes were based on Dunn’s post-test. Scatter plots

depict the range and median values. The nonparametric Kruskal-Wallis test

was also used to compare the average number of cleaved caspase-3-positive

cells per 20x field in pancreata from 6 day old neonatal mice grouped accord-

ing to their genotype and Dunn’s post-test was again used for pair-wise

comparisons. A p value < 0.05 was considered significant in both cases.

Rad51 Foci Formation

One hundred thousand cells of the indicated genotypes were plated on cover-

slips (22x22 mm) in 6 well plates and allowed to grow overnight before treat-

ment with 100 ng/ml of Mitomycin C (Sigma-Aldrich) for 24 hr. Cells were

washed free of medium using PBS, fixed in 4% paraformaldehyde (PFA) for

10 min at room temperature, and then stained with a mouse monoclonal anti-

body to Rad51 (14B4, Santa Cruz Biotechnology) at a dilution of 1:1000

following a previously described protocol (Ayoub et al., 2009). Coverslips

were imaged on a Zeiss LSM510 Meta confocal microscope, using a 40x

objective. Quantification of Rad51 nuclear foci was performed as previously

described (Ayoub et al., 2009). A minimum of 800 cells were analyzed in

each sample to determine the average number of nuclear foci per cell. The

data were exported in Excel format and plotted in Graphpad Prism v5.01.
Can
Viability and Apoptosis Assays

Murine PDAC cell lines maintained in the logarithmic phase of growth were

trypsinized, passed through a 70 mm nylon cell strainer to remove cell clumps,

counted, and plated at 2500 cells/well in 96 well plates in a total volume of

100 ml of complete medium. Five wells were plated per drug concentration

per cell line. Twenty-four hours later, the medium was replaced with a medium

that contained increasing concentrations of Mitomycin C (Sigma-Aldrich) or

Olaparib (JS Research Chemicals Trading). All cells treated with Olaparib

were exposed to the same concentration of vehicle (DMSO). Cell viability

was assessed following 72 hr exposure to drug, using the Cell Titer Blue

Viability Assay (Promega) according to the manufacturer’s instructions.

Results were plotted as mean values with standard deviations (n = 5 for

each different drug concentration). Curve fits were generated using nonlinear

regression function (Graphpad Prism). For quantification of apoptosis, we

used the Apo-ONE Homogeneous Caspase-3/7 Assay (Promega) according

to the manufacturer’s instructions. Apoptosis was quantified 48 hr after addi-

tion of Olaparib or vehicle and expressed as a fold increase in activity

comparedwith vehicle-only treated cells, adjusted for cell viability that was as-

sessed as previously described. For western blotting for cleaved caspase-3,

cells were treated with 2.5 mM of Olaparib for 48 hr before harvesting.

Histology, Histochemistry, and Immunohistochemistry

Explanted tissues were fixed in 10% neutral-buffered formalin solution for

24 hr and transferred to 70% ethanol. Tissues were embedded in paraffin,

cut in 5mm sections on poly-lysine coated slides, deparaffinized, rehydrated,

and stained with H&E. The alcian blue and dPAS histochemical stains were

performed according to established protocols (www.IHCWorld.com). Images

were collected on an Olympus BX51 microscope using cellB software. For

immunohistochemistry, following standard deparaffinization and rehydration,

sections were unmasked in 10 mM citric acid (pH 6.0) in a microwave for

12.5–20 min depending on the antigen. Endogenous peroxidases were

quenched in 3% H2O2/PBS for 15 min. Remaining steps were according to

the Vectastain Elite ABC kit (rabbit) flowchart (Vector Labs, Burlingame, CA).

The following primary antibodies were used: rabbit polyclonal antibody to

Cytokeratin-19 (ab15463, Abcam, 1:100) and rabbit anti-cleaved caspase-3

polyclonal antibody (#9661, Cell Signaling Technology, 1:100). Primary anti-

body incubation was performed overnight (16 hr) at 4�C and detection was

assessed using the ImmPACT DAB peroxidase substrate (Vector Labs). For

fluorescent immunohistochemistry following deparaffinization, rehydration,

and antigen retrieval, sections were blocked for 30 min (RT) with 10% normal

goat serum (Jackson ImmunoResearch Laboratories, 005-000-001) in TBS-

Tween supplemented with 0.2% Triton X-100. Primary antibody incubation

was performed overnight (4�C) in TBT (1X TBS, 0.1% bovine serum albumin,

0.2% Triton X-100) using rabbit anti-gH2AX polyclonal antibody (ab2893,

Abcam, 1:200) and guinea pig anti-insulin polyclonal antibody (Dako,

A0564,1:100). Following secondary antibody incubation with AlexaFluor 488

goat anti-guinea pig and AlexaFluor 568 goat anti-rabbit secondary antibodies

(Molecular Probes, Invitrogen), both at 1:1000 dilution in TBT for 30 min at

37�C, slides were mounted with Vectashield medium containing DAPI (Vector

Laboratories, H-1200), covered with coverslips, and imaged on a Zeiss

LSM510 Meta confocal microscope using a 40x objective. Images were

acquired using constant zoom and imaging parameters (laser intensities and

detector settings).

Laser-Capture Microdissection and Genomic PCRs

Microdissection of murine cancerous ducts was performed with the Zeiss

P.A.L.M. system using 5mm tissue sections cut onto membrane-coated slides

(Zeiss). DNA was extracted using the QIAamp DNA Micro Kit (QIAGEN)

following the manufacturer’s protocol. 1-3 ng of extracted DNA was used in

PCR reactions to detect the conditional and recombined alleles. Primer pairs

for individual PCR reactions are included in Supplemental Experimental

Procedures. PCR conditions have been previously published (Hingorani

et al., 2005; Jonkers et al., 2001; Perez-Mancera and Tuveson, 2006).

BRCA2999del5 LOH Analysis in Human Pancreatic Cancer Samples

Pancreatic tumor samples were obtained from patients that participated in

earlier studies of familial BRCA-related cancers with permission from the

Data Protection Authority (PV2006050307) and the National Bioethics
cer Cell 18, 499–509, November 16, 2010 ª2010 Elsevier Inc. 507
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Committee (Iceland) (VSNb2006050001/03-16). Histological material available

from these pancreatic tumors was evaluated and viable representative tumor

tissue selected. Representative samples were subsequently dissected from

15 mm-thick sections of paraffin-embedded blocks. Genomic DNA was ex-

tracted following standard procedures for deparaffinization, rehydration, and

crosslink removal using the High-Pure PCR template preparation kit (Roche)

according to the manufacturer’s instructions. Allele-specific quantitative

PCR (qPCR) reactions to quantitatively determine the relative proportions of

the wild-type and 999 del5 BRCA2 alleles were carried out using the 7500

Realtime PCR system (Applied Biosystems). We used a TaqMan method

with a single BRCA2 specific, minor groove binding (MGB) probe (50-end
labeled with FAM, and with a nonfluorescent quencher at the 30 end), a single

BRCA2 specific forward primer, and two allele-specific reverse primers.

Therefore, the PCR for wild-type andmutant alleles was performed in separate

wells. Details of the qPCR primers and TaqMan-MGB probe can be found in

Supplemental Experimental Procedures. The BRCA2 wild-type to mutant-

allele ratios were quantified by measuring differences in fluorescence intensity

of FAM performed in duplicate and the Ct values (number of cycles to reach

intensity threshold) averaged. The wild-type to mutant allele ratios were calcu-

lated to wild-type allele frequencies by the following equation as previously

described (Germer et al., 2000): frequency of allele1 = 1/(2DCt+1), where

DCt = (Ct of allele1 – Ct of allele2).

Western Blotting

Logarithmically growing, spontaneously immortalized MEFs and cells from

established PDAC lines were harvested by trypsinization and lysed in ice-

cold RIPA lysis buffer (50 mM Tris-HCL [pH 7.4], 150 mM NaCl, 0.5% (v/v)

deoxycholate, 0.1% (v/v) SDS and 1% (v/v) Igepal), supplemented with

1 mM DTT, 1mM PMSF, protease inhibitors (Amersham), and phosphatase

inhibitor cocktails 1 and 2 (Sigma). Protein concentration was quantified using

the BCA assay (Sigma). Total protein (100 mg) was resolved in 3%–8% Tris-

Acetate precast Midi gels (Invitrogen) according to the manufacturer’s

protocol and transferred to PVDFmembranes under semi-dry conditions using

the Multiphor II electrophoresis system (Amersham). Membranes were

blocked in 5% nonfat dry milk in TBS-Tween (150 mM NaCl, 5 mM Tris-HCL

[pH 7.4]), and blotted with primary antibodies: rabbit polyclonal antibody

against the N terminus of murine Brca2 (Sarkisian et al., 2001) (1:500), mouse

monoclonal anti-b-actin (1:5000, Sigma-Aldrich), and horseradish peroxidase-

conjugated anti-mouse and anti-rabbit secondary antibodies, both used at

1:10000 dilution. Signal was developed with the ECL Plus detection reagent

for Brca2 and with ECL for b-actin (Amersham). Western blotting for cleaved

caspase-3was performed in the sameway using a rabbit monoclonal antibody

(#9664, Cell Signaling Technology) at 1:1000 dilution.

Southern Blotting

Genomic DNA from pancreatic tumors was prepared using the DNeasy kit

(QIAGEN) according to the manufacturer’s instructions. Genomic DNA

(7.5 mg) was digested with EcoRI, and southern blot was set up with the alka-

line transfer method, using the Hybond-XLmembrane from Amersham. Prehy-

bridization was carried out overnight with hybridization buffer (53 SSC, 53

Denhardt’s reagent, and 0.1% SDS). DNA probe generated using the primers

Brca2 30 Probe Forward and Brca2 30 Probe Reverse (see Supplemental

Experimental Procedures) was labeled radioactively with 32PdCTP and

allowed to hybridize overnight. Images were acquired using either a FUJIFILM

FLA-5000 Image Reader or on X-ray film developed after 7–8 days incubation

at �80�C. The ratio of the intensities of the bands corresponding to the wild-

type and mutant Brca2 allele were densitometrically quantified.

Quantitative RT-PCR

Real-time quantification of mRNA corresponding to the C terminus of murine

Brca2 using SYBR green was carried out with the Roche 480 light cycler.

Normalization and target to reference ratios were calculated according to

the manufacturer’s instructions (Roche). RNA extraction from PDAC cell lines

was carried out using the RNeasy kit (QIAGEN) according to the accompa-

nying protocol. Total RNA (2 mg) was converted to cDNA using the M-MLV

Reverse Transcriptase kit (Invitrogen). Primers Brca2 22 Forward and Brca2

24 Reverse (see Supplemental Experimental Procedures) were used to quan-
508 Cancer Cell 18, 499–509, November 16, 2010 ª2010 Elsevier Inc
tify the levels of cDNA corresponding to the 30 end of murine Brca2 in each

sample. Levels of amplified Gapdh cDNA were used as the reference.

SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures and Supplemental Experi-

mental Procedures and can be found with this article online at doi:10.1016/

j.ccr.2010.10.015.
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