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ABSTRACT
Pancreatic ductal adenocarcinoma (PDA) is an almost
uniformly lethal disease. One explanation for the
devastating prognosis is the failure of many
chemotherapies, including the current standard of care
therapy gemcitabine. Although our knowledge of the
molecular events underlying multistep carcinogenesis in
PDA has steadily increased, translation into more
effective therapeutic approaches has been inefficient
over the last several decades. Evidence for this innate
resistance to systemic therapies was recently provided
in an accurate mouse model of PDA by the
demonstration that chemotherapies are poorly delivered
to PDA tissues because of a deficient vasculature. This
vascular deficiency correlated with the presence of
a dense stromal matrix that is a prominent histological
hallmark of PDA tumours. Therapeutic targeting of
stromal cells decreased the stroma from pancreatic
tumours, resulting in increased intratumoral perfusion
and therapeutic delivery of gemcitabine. Stromal cells
contained within the PDA tumour microenvironment
therefore represent an additional constituent to
neoplastic cells that should be critically evaluated for
optimal therapeutic development in preclinical models
and early clinical trials.

INTRODUCTION
Pancreatic ductal adenocarcinoma (PDA) is one of
the most lethal human malignancies.1 The rapid
clinical decline commonly observed in patients
with pancreatic cancer has been ascribed to both
the aggressive biological nature of PDA and to the
ineffectiveness of systemic therapies available for
patients with advanced disease.2 3 Indeed, even
among patients with pancreatic cancer who
undergo surgery and adjuvant chemotherapy, the
median survival rate for those with clean micro-
scopic surgical margins (R0 resection) is approxi-
mately 2 years, with a 5-year survival of
15e20%.4e6 One explanation for the poor response
of patients to systemic therapies was recently
provided in an accurate mouse model of PDA by the
demonstration that chemotherapies are poorly
delivered to PDA tissues because of a deficient
vasculature.7 This vascular deficiency correlated
with the presence of the dense stromal matrix that
makes up the bulk mass of PDA tumours, and
chemical inhibition of stromal cells decreased the
matrix and increased intratumoral perfusion and
therapeutic delivery. Stromal cells contained within

the PDA tumour microenvironment therefore
represent an additional constituent to neoplastic
cells that should be critically evaluated for optimal
therapeutic development.
Pancreatic carcinogenesis is currently understood

as a multistage process characterised by the accu-
mulation of genetic alterations accompanied by
typical morphological and histological changes in
pancreatic ductal cells. Activating mutations in the
K-ras gene occur early during malignant trans-
formation, followed by subsequent somatic muta-
tions involving the tumour suppressor genes p16,
p53 and DPC4.8 9 In addition, approximately 10%
of all patients have an inherited predisposition to
the development of PDA, and this has been
partially ascribed to several germline mutations
including BRCA2, STK11/LKB1, p16/CDKN2A and
PRSS1.10 On the basis of these histopathological
and molecular studies, a model similar to that of
the adenoma-carcinoma sequence in the develop-
ment of colon cancer11 was proposed to describe
the progression from normal pancreas via preneo-
plastic lesions to invasive cancer.9 According to
their stepwise accumulation of histopathological
and molecular alterations, the preneoplastic lesions
have been classified as pancreatic intraepithelial
neoplasms (PanINs) 1a/b, 2 and 3.
The knowledge of high-grade PanIN lesions that

are known to be a risk for developing PDA has led
to early pancreatectomy; however, the impact of
survival on such patients is currently unknown,12

and the extension of this concept to the general
population has not been feasible. In addition, there
have yet to be any effective molecular therapies
reported based upon our knowledge of the PanIN
progression scheme.
After decades of intensive efforts in genomic

research focusing on molecular alterations in
tumour cells,13 attention has increasingly expanded
to include the tumour microenvironment, in
particular the stromal cells. Many epithelial
tumours including breast, prostate and ovarian
cancers exhibit a prominent desmoplastic reaction
with accumulation of stromal cells. Among them,
pancreatic cancer displays the most extensive
stromal reaction accounting for up to 90% of the
tumour volume. Several notable studies have
provided evidence that the microenvironment co-
evolves with transformed epithelial cells in different
carcinomas.14e20 However, the pathophysiological
mechanisms of tumour stromal signalling and its
contribution to tumour progression and therapeutic
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resistance are still poorly understood in pancreatic
cancer and other solid carcinomas.21e23 Here we
discuss recent preclinical models that hold great
promise as they allow new concepts for improving
the efficacy of chemotherapeutics to be tested
rapidly and with high fidelity.

STROMAL MICROENVIRONMENT IN PDA
One of the most prominent histological features of
PDA is the presence of an abundant tumour stroma
(figure 1).24 The stromal microenvironment is
a complex structure composed of an extracellular
matrix (ECM), activated fibroblasts and myofibro-
blasts, inflammatory cells and blood and lymphatic
vessels that distort the normal architecture of
pancreatic tissue. Interactions between the
neoplastic and non-neoplastic cells and acellular
matrix have been proposed to stimulate the
extensive desmoplastic reaction. At the molecular
level, stroma production is promoted by the acti-
vation of multiple cancer cell-derived signalling
pathways such as transforming growth factor
b (TGFb), hepatocyte growth factor (HGF/Met),
fibroblast growth factors (FGFs), insulin-like
growth factor 1 (IGF-1) and epidermal growth
factor (EGF) via autocrine and paracrine mecha-
nisms.25 26 These receptor-mediated signalling
cascades lead to secretion of structural matrix
components including proteoglycans, collagens and
fibronectin as well as catalytically active enzymes
such as proteinases.
The exact composition of the ECM is regulated by

a multitude of different mechanisms. For instance,
matrix metalloproteinases (MMPs) are a large
family of zinc-containing proteolytic enzymes
involved in the degradation, dynamic remodelling
and turnover of ECM proteins in physiological and
pathological conditions.27 In particular, MMP-2 and
MMP-9 are commonly overexpressed in pancreatic
cancer and play an important role in tumour cell
migration and invasion by degrading the
surrounding ECM.28 29 Recent evidence suggests
that the interplay of extracellular proteinases and
their inhibitors in invasion and metastasis is much

more complex than previously anticipated. In
particular, the biological functions of proteinase
inhibitors extend far beyond their roles as inactiva-
tors of their target proteinases. For example, tissue
inhibitors of metalloproteinases (TIMPs), in
particular TIMP-1 and TIMP-2, are frequently over-
expressed in pancreatic cancer and various
other malignancies, along with their target
proteinases.30 31 Another example is the serine
protease inhibitor SERPINE2 (protease nexin I),
which is overexpressed in various gastrointestinal
malignancies and promotes ECM production and
local invasion of pancreatic tumours in vivo.32 In
addition, a multitude of proteins has evolved which
modulate the composition of the ECM. Among
them, the ECM metalloproteinase inducer
(EMMPRIN) stimulates MMP-1 expression in
fibroblasts and is frequently overexpressed in various
solid tumours correlating with tumour size, stage
and prognosis in primary breast and ovarian
cancer.33 In pancreatic cancer, EMMPRIN is
expressed on the cell surface and supernatant of
EMMPRIN-positive pancreatic cancer cell lines such
as MiaPaCa and Panc1 induces MMP-2 synthesis in
cultured pancreatic stellate cells (PSCs).34

The complex interplay between tumour cells and
stroma also leads to distinct changes in the tran-
scriptional programme of the cellular components
within the stroma, such as activated fibroblasts,
stellate cells and inflammatory cells, which in turn
promotes cancer cell motility, resistance to hypoxia
and stromal neovascularisation. These effects in
stromal cells include altered integrin expression
patterns, increased expression levels of cyclo-
oxygenase 2, vascular endothelial factor A (VEGF-
A), collagen I and hypoxia-inducible factor-1a.35e40

Recently, activation of the developmental sonic
hedgehog (SHH) pathway has been identified as
another mediator that promotes stromal desmo-
plasia.20 41 Binding of SHH ligands to the patched1
receptor relieves repression of the 12-trans-
membrane domain protein Smoothened (SMO),
resulting in activation of the Gli family of tran-
scription factors. SHH is overexpressed in
neoplastic cells of human pancreatic tumours42

while downstream signalling is confined to the
stromal compartment, forming a paracrine signal-
ling axis from neoplastic to stromal cells.43 44

Interestingly, PSCs have emerged as pancreas-
specific mesenchymal cells and important regula-
tors of desmoplasia in pancreatic cancer.36 45 PSCs
share many morphological and functional charac-
teristics with hepatic stellate cells (HSCs) whose
central role in liver fibrosis is well established.
However, distinct differences in expression patterns
were observed between HSCs and PSCs, reflecting
organ-specific variations of the common stellate
cell-specific phenotype.46 Isolation and in vitro
culture of PSCs was first achieved in 1998 and
provides a useful platform to investigate the
mechanisms mediating epithelialestromal interac-
tions in pancreatic cancer.47 48 PSCs are normally
located in the space between the acini and endo-
thelial cells and store vitamin A as retinyl palmitate

Figure 1 H&E stain of human pancreatic ductal
adenocarcinoma showing a prominent desmoplastic
reaction (black arrows), neoplastic ductal cells (arrows)
and inflammatory cells (white arrows).
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in lipid droplets.49 Two different functional stages
can be clearly defined in PSCsdthe quiescent state
and the activated state (or ‘myofibroblastic’ state).
In quiescence, PSCs store vitamin A droplets and
are characterised by the presence of desmin and
glial fibrillar acidic protein. Upon activation by
growth factors, cytokines or oxidant stress, PSCs
transform into a myofibroblast-like phenotype and
secrete excessive amounts of collagen I, III, fibro-
nectin and matrix degrading enzymes such as
MMPs.48 Figure 2 shows immunofluorescence
stains of cultured primary human PSCs. Notably,
several studies suggest that activated PSCs rather
than cancer cells are the main source of MMPs and
TIMPs.50 51 Although proangiogenic molecules
such as periostin and VEGF are secreted by PSCs,
sustained PSC activation promotes fibrogenesis and
ultimately may create a highly desmoplastic,
hypovascular and hypoxic tumour micro-
environment.52e54 Interestingly, pancreatic cancer
cells induce PSC activation in vitro by growth
factors such as TGF-b1, platelet-derived growth
factor (PDGF) and VEGF.45 55 In vivo, co-injection
of PSCs and cancer cells results in increased tumour
growth accompanied by a pronounced desmo-
plastic reaction.55 56 A recent study using an
orthotopic tumour model with co-cultured PSCs
and pancreatic cancer cells showed increased
migratory potential in both cell types but inhibi-
tion of apoptosis in cancer cells only, suggesting
a pro-survival and pro-growth mutual interac-
tion.57 Strikingly, stellate cells were also detected in
metastatic foci in the liver of nude mice, suggesting
co-migration of PSCs with cancer cells to establish
a potentially tumour-favourable microenvironment
at distant sites.57 Figure 3A schematically depicts
the various critical pathways involved in the
interaction between stromal cells and cancer cells.

The relevance of these findings is underscored by
the histological evaluation of clinical specimens
indicating that the prognosis and outcome of
patients with pancreatic cancer heavily depends on
the stromal activity and the ECM composition
within the tumours. High activity of myofibro-
blasts as evidenced by immunohistochemistry
against a-smooth muscle actin or secretion of
distinct proteins such as secreted protein acidic and
rich in cysteine (SPARC) were associated with
a worse prognosis in patients with PDA, high-
lighting the impact of the stromal microenviron-
ment on disease progression and patient
survival.58e60

Taken together, the previously held notion that
the tumour stroma of PDA is a defensive reaction of
the host protecting against invasive growth and
formation of metastases has been abandoned. In
contrast, a highly dynamic tumour microenviron-
ment is now being proposed that promotes tumour
growth and invasion, protects from apoptosis and
potentially creates barriers to the delivery of ther-
apeutic compounds.35 36 61 62

IN VIVO MODELLING OF TUMOUR
MICROENVIRONMENT: GENETICALLY
ENGINEERED MICE IN PDA
Various mouse models of pancreatic cancer have
been developed in the past few years, providing
a crucial platform for the investigation of basic
biological principles of cancer development and
tumour biology.63 More recently, mouse models of
cancer have been increasingly employed to investi-
gate and discover novel preclinical and clinical
anticancer agents.
Historically, the most commonly used animal

models for PDA were xenograft tumours in
immunodeficient mice generated by subcutaneous
injection or orthotopic transplantation of tumour
cell lines. These models are relatively simple to
establish and human cancer cells can be assessed in
the murine in vivo environment. Recently, primary
patient-derived tumour xenografts have been
described as a platform to develop personalised drug
screening.64e66 However, major drawbacks of
xenograft models include the impaired immune
response owing to the need to use immunocom-
promised mice as hosts, the inability to perpetuate
the human tumour microenvironment and the
profound differences in tumour structure and
vasculature compared with endogenous human
PDAs.67 Accordingly, results obtained from
a number of xenograft studies have not translated
well into the clinic. For instance, PDA xenografts
often respond well to anti-angiogenic agents,68 but
these same agents often fail to show any clinical
benefit in the cognate human tumour.69

An important milestone in PDA research was
therefore the development of genetically engineered
mouse models (GEMM).63 Of special interest are
mutant mice that have been engineered to lose the
expression of tumour suppressor genes (TSGs) or
express oncogenes or dominant negative TSGs fromFigure 2 Immunofluorescence stain of cultured primary human pancreatic stellate cells.
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their native promoters by using knock-out or
knock-in technologies. To control and direct the
spatiotemporal expression of the mutant alleles,
site-specific recombinases such as Cre are used. Two
GEMMs were recently developed that bear striking
resemblance to human PDA. The first is based on
mutation of the endogenous murine Kras gene
specifically in pancreatic progenitor cells by
crossing mice with a conditionally activated Kras
allele (LSL-KrasG12D) to transgenic strains that
express Cre recombinase in pancreatic lineages
(PdxCre or p48Cre). These ‘KC’ mice develop
murine PanIN lesions with 100% penetrance, but
only a small subset of these animals progress to
PDA at an advanced age, suggesting that additional
genetic alterations are necessary for tumour
formation.70 To accelerate the process of tumori-
genesis, PdxCre-expressing compound mutant mice
were generated with conditional mutations in both
Kras and Trp53 in analogy to the genetic alterations
in human PDA. These ‘KPC’mice develop advanced
PDA with 100% penetrance at an early age, thus
recapitulating human PDA including histopatho-
logical similarities in neoplastic cells, desmoplasia,
occurrence and site of metastasis and comorbidities
such as cachexia, activation of biochemical path-
ways and evidence for genomic instability.71

Further important work was done by the Barbacid
group providing striking evidence that temporal
expression of endogenous Kras in acinar cells of
adult mice results in PanINs and invasive PDA only
in the context of caerulein-induced pancreatitis.72

Thus, GEMMs (in contrast to xenograft models)
are particularly suited to elucidate the role of the
tumour-microenvironment interactions in the
disease initiation and progression of pancreatic
cancer. Furthermore, preclinical studies can be
established that examine the effects of drugs on the

tumour microenvironment and specifically target
tumour-associated stromal cells.

STROMA-TARGETED THERAPIES IN PANCREATIC
CANCER
Over the last decade, major efforts have been
undertaken to enhance the effect of the current
standard of care chemotherapy, gemcitabine, by the
combination with a second cytotoxic drug.73 To this
end, large randomised phase III trials were
performed to evaluate additional effects of
cisplatin,74 75 oxaliplatin,76 77 5-FU,78 irinotecan,79 80

exatecan81 and pemetrexed,82 but there was no
significant overall survival benefit. For the combi-
nation capecitabine and gemcitabine versus gemci-
tabine alone, initial data suggest no significant
advantage for overall survival.83 Notably, a recent
phase III trial revealed a trend towards improved
overall survival, and a meta-analysis involving 935
patients showed a significant survival benefit for the
combination of capecitabine and gemcitabine.84

Until recently, the mechanism for the extremely
poor responsiveness to therapeutic agents has
been mainly ascribed to the heterogeneity of trans-
formed cells rather than to the tumour micro-
environment.
The improved knowledge of the genetic and

molecular alterations not only occurring in tumour
cells but also in the surrounding stromal cells has
recently led to the development of novel
therapeutic approaches specifically targeting profi-
brotic pathways, cytokines and growth factors
involved in tumour desmoplasia and angiogenesis
to control tumour growth, prevent formation of
metastases and increase the cytotoxic effect of
chemotherapeutics.
Following promising results from preclinical

studies, marimastat, a broad-spectrum synthetic
MMP inhibitor, was the first compound tested in
a large randomised phase III trial in 414 patients
with advanced pancreatic cancer. Initially fuelled
with great enthusiasm, the results were rather
disappointing as neither marimastat alone nor the
combination of marimastat and gemcitabine
showed any improvement in overall survival or
tumour control compared with gemcitabine
alone.85 86 One year later in 2003, Moore et al
reported the results of a phase III trial with BAY-12-
9566, a specific inhibitor of MMP-2, MMP-3, MMP-
9 and MMP-13. Patients with locally advanced or
metastatic pancreatic cancer were treated with
BAY-12-9566 or standard intravenous gemcitabine;
however, the study was discontinued after
completion of the second interim analysis showed
that the new substance was significantly inferior to
gemcitabine (median overall survival 3.74 months
vs 6.59 months).87 As pointed out earlier, the role of
proteases in cancer biology, in particular MMPs, is
highly complex and the failure of broad-spectrum
anti-MMP therapies might at least partly be
explained by the fact that MMPs have pro-tumor-
igenic as well as tumour suppressive functions.
As cardinal mediators of tumour neoangio-

genesis, overexpression of VEGF and its receptors

Figure 3 (A) Schematic depiction of various pathways and growth factors (green dots)
interacting between stromal cells (yellow) and cancer cells (blue). (B) Sonic hedgehog
(SHH) inhibition decreases desmoplasia (fibrous reddish bundles) and increases the
density of tumour vessels (red) around cancer cells (blue). ECM, extracellular matrix;
FGF, fibroblast growth factor; IGF, insulin-like growth factor 1; PDGF, platelet-derived
growth factor; SDF, stromal cell-derived factor; TGFb, transforming growth factor b;
VEGF, vascular endothelial growth factor.
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(VEGFR-1, VEGFR-2 and VEGFR-3) has been
associated with poor prognosis and increased
metastatic potential in pancreatic cancer.88

Bevacizumab, a recombinant humanised anti-VEGF
monoclonal antibody approved for the treatment of
colon cancer, has also been investigated in PDA.
Despite promising results from a previous phase II
trial,69 the combination of bevacizumab and
gemcitabine failed to significantly prolong survival
in a large phase III trial with 602 patients with
pancreatic cancer.89 Similar discouraging results
were obtained with a clinical phase II trial in 103
patients with pancreatic cancer using gemcitabine
and axitinib, an oral inhibitor of VEGFR-1, VEGFR-
2 and VEGFR-3.90

The only targeted agent which demonstrated
a statistically significant effect on overall survival is
erlotinib, a small molecule inhibitor of the EGFR
tyrosine kinase. EGFR is frequently overexpressed
in pancreatic cancer and correlates with poor
prognosis and disease progression.91 EGFR signal-
ling has also been shown to impact pancreatic
stromal reaction by activating PSCs.92 The combi-
nation of gemcitabine and erlotinib conferred
a marginal but significant improvement in survival
over gemcitabine alone in a large phase III rando-
mised trial (median survival 6.24 months vs
5.91 months).93

Taken together, numerous clinical trials have
failed to substantially improve the prognosis of
patients with advanced pancreatic cancer during
the last decade. The general resistance of human
PDA to systemic therapies in vivo is unusual
compared with other solid carcinomas, casting
doubt on the transferability of preclinical results to
the clinical situation in PDA.94 It can be assumed
that the lack of survival benefit shown by
conventional and targeted agents in patients with
pancreatic cancer might at least partly evolve from
the predominant desmoplastic stroma reaction and
the pronounced hypovascularity.
Indeed, experimental evidence was provided very

recently demonstrating that the hypovascular
tumour stroma affects delivery of chemotherapeu-
tics in a GEMM of PDA. We showed that the active
intracellular metabolite of gemcitabine, 29,29-
difluorodeoxycytidine triphosphate (dFdCTP), was
detectable in transplanted xenograft tumours but
undetectable in tumours of KPC mice which are
characterised by a pronounced desmoplastic reac-
tion highly resembling the human PDA phenotype.
Subsequent inhibition of the SHH signalling
pathway by IPI-926, a semisynthetic derivative of
cyclopamine, resulted in a dramatic depletion of
stromal components paralleled by an increase in
intratumoral vascular density. Although stroma
depletion alone had no immediate antitumour
effect in this experimental setting, co-administra-
tion of gemcitabine and IPI-926 resulted in
a significantly enhanced intratumoral concentra-
tion of dFdCTP, transient disease stabilisation and
a statistically significant prolongation of survival.7

However, the pronounced stromal reaction ulti-
mately returned in the KPC model, suggesting that

the tumours can adapt to chronic SHH inhibition.7

The effects of SHH inhibition on the stromal and
vascular architecture are schematically displayed in
figure 3B.
This study therefore provides a proof of principle

that disruption of the desmoplastic stroma facili-
tates the delivery and enhances the efficacy of
gemcitabine in PDA. Poor perfusion and a deficient
non-angiogenic vasculature limits drug delivery and
may also help to explain the recent failures of anti-
VEGF strategies in pancreatic cancer.
Three months after we published these murine

data, exciting clinical results on non-invasive
quantification of blood flow and metabolic activity
of pancreatic tumours using oxygen-15-labelled
water [15O]-H2O and [18F]-fluorodeoxyglucose
(FDG) positron emission tomography (PET)/CT
imaging were presented by a Finnish group.95 In
this small study, pancreatic tumours were charac-
terised by reduced blood flow and high metabolic
activity compared with normal pancreatic tissue.95

Furthermore, a high ratio of glucose uptake to
blood flow was a predictor of poor prognosis,
further supporting the novel concept that a highly
dynamic but hypovascular tumour microenviron-
ment contributes to chemoresistance and poor
therapeutic outcome in patients with pancreatic
cancer by creating barriers for drug delivery.95

CONCLUSIONS
The desmoplastic hypovascular tumour microen-
vironment consisting of large amounts of ECM
proteins, activated fibroblasts, stellate cells and
inflammatory cells is now recognised to represent
the cardinal histological hallmark feature of PDA.
Recent preclinical and clinical data suggest that this
stromal microenvironment creates a ‘fortress-like’
hypovascular barrier that impairs the delivery of
chemotherapeutics and promotes aggressive
neoplastic cell behaviour. The extremely poor
prognosis and resistance to systemic therapies
might therefore be partly explained by inefficient
drug delivery to the tumour cells rather than drug
resistance of the tumour cells. Breaching this
‘stroma fortress’ represents a promising strategy to
improve the delivery and efficacy of systemic
chemotherapeutics and might open new thera-
peutic avenues for patients with PDA. One chal-
lenge in translating these findings to the clinical
care of patients is the need to develop means to
accurately measure drug levels in PDA tumours
with non-invasive techniques or small biopsies.
However, clinical trial design is often hampered by
the fact that PDA most commonly occurs in elderly
people and is associated with severe cachexia and
other age-related conditions. GEMMs of PDA are
particularly suited to study the biology and treat-
ment of this disease and may also be useful for
developing novel pharmacokinetic approaches.
GEMMs should also help define the role of PSCs in
stimulating the desmoplastic stroma, and deter-
mine whether these are the target cells of hedgehog
inhibitors. Additional pathways known to be
involved in the activation of PSCs such as FGF,
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PDGF or IGF-1 should also be interrogated as
potential therapeutic targets in the GEMM.61 96

Furthermore, efforts aimed at inducing PSC trans-
differentiation from an activated to a quiescent
state via administration of vitamin A analogues
could also be an attractive modality as reported in
culture-activated rat PSCs.96

However, as observed in the mouse PDA model,
tumours adapt to chronic inhibition of profibrotic
signalling and ultimately resume stromal desmo-
plasia and hypovascularity. We therefore anticipate
that multiple approaches that target the PDA
stroma will probably be necessary in order to
circumvent this adaptive response and maximise
therapeutic benefits for patients.
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